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Metal enolates have become foremost intermediates for the
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construction of structurally complex molecular architecturés. tho\_)\/ Ph\/o\_/K
particular, lithium, boron, and Ti(IV) enolates play a crucial role : :
in the stereoselective formation of carberarbon bonds.Thus, 1 2
lithium and boron enolates have been extensively stutigolw- Figure 1. The two protectedr-hydroxy ketones studied in this work.
ever, there is a scarce number of similar studies concerning Ti(IV)

; : Cly Cly
enolates, which have provided a poor knowledge about the aggre- o TI\O —|

. . . . . O
gation state or the coordination sphere of titanium as well as the i o
) ; ) o Ph._0.2 Ph._0.2 Ph.__ O 2
nature of its electronic ground stetd&ecent studies of titanium- e %\4/ Y \)3\4/ ~ J3\4/

mediated aldol reactions based on chixahydroxy ketoneshave
shown the tremendous impact of the enolization step on the
stereochemical outcome of these processes. This is especiall)/:ig“re 2. Proposed structures for the complexes derived from kelone
dramatic for lactate-derived-benzyloxy ketone&.In this com- —
munication we provide strong experimental and theoretical evidence A zam 6
that the TiCl-mediated enolization of these ketones results in a il a0, 'l
biradical titanium enolate. . r‘\>< } 1o |~

Since the seminal studies reported by Evans &g e TiCl- '"SQI e . 4 'ﬁ%“l‘f ok
mediated enolization of ketones is performed in two consecutive : ‘7’" 221 :ﬁ: }WK
steps in anhydrous and apolar media (see Scheme 1): (1) formatior = 30 205 ,‘* T =

1 TiCl,—1 Titanium enolate from 1

Scheme 1. General Process of Formation of Titanium Enolates X e N"l/ _CSS _ Ts2 a
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of the complex between Tighnd the carbonyl and (2) extraction 3. };:' S e
of the activated acidic proton in the position with respect to the # ‘\ x 2150 ﬁ(_i
carbonyl group by a tertiary amine. ..,ﬁ. 2ia7 20 &_‘,, 2188
For simplicity, we have selected the two representative protected
a-hydroxy ketones depicted in Figure 1, namely, 2-benzyloxy-3- Figure 3. Optimized geometries (HF/LANL2DZ foMl M2, and TS1
pentanone ¥) and 3-benzyloxy-2-butanone&)( to develop an and CASSCF(8,10)/LANL2DZ foCSS TS2, OSS andT) with critical
experimental analysis to obtain detailed information about the gogf(;frs‘igr:hfé (ir:)iﬁt) :r?edr p;tgg:;('l_irm%gomekégl':mc(’;rlc)'??rstﬁg%v10)/
structure and electronic state of the correspondl_ng enc_>|ate. enolate for%at[i)on mecha?nism (See Supporti’ng Information for details.).
IH and*C NMR as well as EPR spectroscopic studies on the
enolization process of ketondsand 2 using TiCl, have been chelated Lewis acigcarbonyl complexM1. The calculated bond
performed (see Supporting Information). Comparison of NMR distances for the carbonyl group and the Me®i---O=C system
spectra of the Lewis aciecarbonyl complekand the enolate proves  are compatible with the standard lengths of this kind of bonds.
that they contain a chelated structure as depicted in Figure 2.  Moreover, analysis of electron density of both-T0 bonds reveals
To investigate the electronic structure of these complexes andtheir dative character.
the corresponding molecular structures, we have considered a sim- The next step involves proton abstraction. According to our
plified molecular model representative for the description of the model calculations, addition of ammonia td1 produces a
enolization process by means of ab initio wave function electronic hydrogen-bonded prereactive complEi2 that evolves through
structure calculations. Henoe;methoxyacetone was adopted as a transition stateT S1 to the final Ti(IV) enolate, labeled as closed
model system to represent ketorfeand 2, and the diisopropyl- shell singleiCSS The chelated structure of this enolate encompasses
ethylamine was replaced by ammonia (see Supporting Information). four chlorine atoms directly bound to the hexacoordinated titanium
The resulting energy profile for such model enolization is shown and exhibits significant changes on the-T® bond lengths whereas
in Figure 3. As expected, the first step entails the formation of a the C-O distance of the carbonyl group M1 has been consider-
ably enlarged. Because the electron density of theTit@liety in

T Departament de Qmica Fsica, Universitat de Barcelona. H ; ; ; ;
* Departament de Omica Orgaica, Universitat de Barcelona. the Ti(IV) enolateCSSis hlghly_polarlnzed toward the chlorine
§ Consejo Superior de Investigaciones Ciicais (CSIC). atoms and empty d-shells are still available for the metal, we also
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Figure 5. EPR spectra of titanium enolates derived from ketahéeft)

a. Ti(lll) enolate OSS state b. Ti(lll) enolate T state and2 (right) registered at 20 K in C¥Cl». Inset corresponds tams = 2

) . . fingerprint transition of triplet electronic state.
Figure 4. The most relevant valence (natural) orbitals and the corresponding

occupation numbers for the titanium (1) enolate singlet open-sBSIS L L .
and triplet,T, states. The most significant spin densities (unpaired electrons) @ biradical, which is formed through @alence tautomerism process.

in the T state are Ti (0.98), O (0.28), G-0.10), and C (0.82). The implication of these biradical complexes in this and related
reactions is expected to be of fundamental significance to understand
evaluated the existence of a valence tautomerism in this enolate.the mechanism of many transition metal mediated enolizations.
We found another structure, namely, open shell sin@i8§ with ) o o
a very strong biradical characterso that one electron is mainly Acknowledgment. We thank the Spanish Ministerio de Ciencia
located over the titanium atom and the other electron forms an Y Técnologa (Projects CTQ2005-01117/BQU, BQU2005-07790,
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nature. The most relevant valence (natural) orbitals of @S Supporting Information Available: Details on the experimental

biradical, along with the corresponding occupation numbers, are procedurelH and*C NMR spectra, and ab initio calculations. This

shown in Figure 4a. The topology of these orbitals allows us t0 material is available free of charge via the Internet at http://pubs.acs.org.
assign these orbitals to an allylic-like-system fr;, 7>, and s
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